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Abstract

We evaluate the Linux scheduler under a single user
workstation setting. Using a modi�ed Linux kernel, we
collect trace data for all scheduling decisions and process
hierarchy information and then trace particularly prob-
lematic system loads to evaluate two items. The �rst is
to see how well the default behavior works, and in so
doing we employ a metric for quantifying how success-
fully a process competes for CPU time. From this in-
formation we identify a problem with the propagation of
dynamic priorities when a process forks that can cause
problems under some circumstances. The second evalua-
tion item is to investigate how e�ectively nice functions
as a process priority control mechanism. We �nd that
the default behavior of the Linux scheduler could ben-
e�t from hinting about what processes are important,
either through X Windows focus information or through
some other mechanism. We also identify and explain sev-
eral situations in which the existing priority mechanism,
when used in an intuitive way, gives insu�cient control
to allow for a highly interactive single user environment
which still makes e�cient use of idle CPU cycles.

1 Introduction

A large portion of systems research is focused on improv-
ing performance for servers and clients on a network with
the assumption of widespread time-sharing of important
resources. However, with the low cost of a reasonably
powerful workstation, another computing model is that
of a networked computer in which the bulk of its work
done and resources used are on the local machine. In this
model, the notion of which processes have a higher prior-
ity may be di�erent from that of a time-sharing system.
Because only one user is assumed to be interacting with
the machine at any given time, all running processes may
not deserve equal priority from the point of view of the

user. This metric, referred to as �user-perceived perfor-
mance,� measures system performance by how fast a user
thinks it is rather than by how fast it performs according
to any other set of benchmarks.

This model becomes relevant in the realm of graphical
applications, where e�ciency is routinely sacri�ced for a
nicer aesthetic. Interactive jobs can create bursty in-
stances of high CPU demand or even occasional pro-
longed sessions of intensive work, while still spending
the majority of the time waiting for user input. Over-
all system throughput, average time to completion, and
other measures of performance mean very little to an X
Windows user whose word processor seems to stick when
scrolling because she is running other jobs in the back-
ground, or who has to wait an excessively long time for
a print preview because of a long compile in the back-
ground. The resources available in a typical modern
workstation are certainly su�cient to scroll a document
smoothly, and from a desktop user's perspective, the op-
erating system should be smart enough to make sure this
happens. One should not be forced to underuse the sys-
tem resources, reserving some fraction of CPU time in
anticipation of a burst of activity in the interactive ap-
plication.

The situation is complicated, however, because the mea-
sure of what is important is completely subjective. A
user may start a large compile in the background and
then surf the internet while waiting for it to complete.
In this case, the browser should have ready access to the
CPU�it will require a �xed amount of time to complete
each user request, so making it wait in order to be fair
to the compile job won't even increase total through-
put, it will just annoy the user. Even if the compile
job su�ered slightly to better serve the interactive user's
foreground application, the user will usually be willing
to take this penalty in order to enjoy the illusion of a
machine completely devoted to the task she is waiting
on at a given time. On the other hand, the user may
have other CPU bound jobs running in the background
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and then start a compile and sit, staring at the screen,
waiting for the compile to complete. In this case the re-
sponsiveness of the compile isn't terribly important, but
the user will want it to �nish quickly, even if the back-
ground job takes a performance hit. When treating all
processes with equal status, there is no way for a sched-
uler to know how to please the user. The only way to tell
that a particular compile is the process that should be
cheated or favored is to know what the user cares about
at a particular time.

Does biasing the scheduler toward some de�nition of �im-
portant� processes improve the responsiveness and per-
formance of the applications the user cares about? What
are heuristics that we can use to determine which pro-
cesses a user thinks is important? For this paper, we
assume that in an X Windows system, the process that
is running in the currently focused window is the pro-
cess that the user cares about and that should be re-
sponsive or complete quickly. Before this question can
be addressed directly, we must �rst evaluate the exist-
ing system, and determine whether or not the scheduler
provides adequate control to respond to such hints in an
appropriate way.

Our traces have shown that nonresponsiveness and ex-
cessive latency in the process a user cares about are real
phenomena that can be detected and quanti�ed by mea-
suring each block of time that the process spends being
ready to run but not running. In the case of interactive
processes, the scheduling events of the X server are also
important to the user-perceived performance.

In addition, attempting to �x these latency issues while
working within the existing scheduler mechanisms cre-
ates new problems. For example, manually setting a
video game to the highest priority possible (via nice)
causes it not to run smoother but to become jerky and
unplayable because of interactions with the X server.
Therefore, it is not likely that there exists a simple �x
of these user-perceived performance problems, and the
scheduler itself may require adjustments. Possible �xes
involve shortening overall time slices in response to longer
run queues; treating X as a special case because it does
work on behalf of others; and using hints about focus
information to in�uence priority and time slice size of
certain processes.

The rest of the paper is outlined as follows: Section 2
discusses related work in the area of scheduling and user-
perceived performance. Section 3 describes our assump-
tions and background information for our scheduling re-
search, and we describe our research techniques in sec-
tion 4. Section 5 discusses the results, Section 6 draws

conclusions, and Section 7 discusses extensions to this
research.

2 Previous Work

Yasuhiro Endo et al. have investigated the use of latency
as a measure of interactive performance[1][3]. The au-
thors noted that traditional benchmarks failed to address
performance issues from the perspective of a user, instead
relying on counters and clock cycles and total through-
put as performance measures. These studies make the
assumption, which we share, that system throughput
is less important in a workstation setting than the la-
tency of certain events. Endo took this metric of latency
even further and explored the area of �user-perceived
performance�[4]. Here, the authors rely on the user as
the starting point for determining which events to study.
They built a tool called TIPME which allowed users to
indicate when something annoying occurred. This would
signal an automated tool that would gather relevant in-
formation so that the researchers could deduce the cause
of annoying events. These issues often involved unre-
sponsive keyboards and mice.

Much work has been done recently to address the prob-
lem that priority-based scheduling does not perform well
in real-time situations. In such situations, priority in-
version and starvation can occur[5][6][2]. These papers
advocate against working within the current scheduling
framework to solve the performance problems. Jones et
al.[5] propose the concept of CPU reservations, which in-
volves reserving a certain proportion of the CPU for a
given process. Steere et al.[6] try to automate this idea
by making scheduling decisions based on the progress
a task has made toward its goal. Duda and Cheriton[2]
propose allowing a process to borrow from its future CPU
allowance in order to get rid of latency now. These are
all interesting ideas to explore when developing alternate
scheduling algorithms to combat the user-perceived per-
formance problem.

3 Assumptions and Background

Information

3.1 Desired Behavior/Assumptions

For our experiments, we make several assumptions; we
document some of the more important ones here:
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• The user is running on a workstation devoted almost
exclusively to a single interactive user.

• The user is interacting primarily with a single pro-
cess at any given time; if that process is blocked,
then the user waits for it to �nish (or replaces it
with a new foreground job).

• The user makes e�cient use of the processor. If the
primary application uses 50% of the processor time,
the user would bene�t from using the remaining 50%
of the CPU time doing some background task.

• The user desires to have the foreground process run
as though it were (almost) the only process running.
If a user is running a long job in the background and
loads a CPU intensive game to pass the time while
the background job completes, he/she has implic-
itly relegated the background job to a less impor-
tant status. For our purposes, the foreground game
will become the most important thing in the system.
If the user doesn't want to disturb the background
process too much, he/she should play Minesweeper
instead of Quake II to pass the time.

• The user is running under the X Windows environ-
ment.

3.2 Problems we don't address

We ignore certain classes of problems in our experiments.
We do not consider real-time processes which run in the
background (such as an mp3 player). We feel this is jus-
ti�ed because the current default scheduler doesn't ad-
dress them (i.e., we aren't making it worse than it was
before), and the solutions that exist now are still valid
under our proposed systems. For example, the Linux
scheduler allows for real-time priority processes which
run FIFO or round-robin with strict priority levels. No
normal process will run when a real-time priority process
is runnable. Also, these processes do not meet our crite-
ria: they are not interactive, and the user is not working
with them directly; background processes with special
requirements are beyond the scope of this paper.

3.3 The Linux Scheduler

The Linux scheduler honors the traditional Unix system
of nice values (set by the user) and dynamic priorities
which vary depending on CPU usage. Internally, how-
ever, the implementation is di�erent. Each process has

two values that are maintained in the task_struct as-
sociated with that process. The �rst is called priority,
and is computed from the user speci�ed nice value as
priority = 20 - nice. So the lowest �xed priority
is 1 (corresponding to nice value 19) and the highest
priority is 40 (corresponding to nice value −20). The
second value, called counter, represents the length of the
time slice that will be assigned to this process when it
receives the CPU. Values for counter range from 0 (this
process has exhausted its time slice) to 2 × priority
with CPU bound processes having a maximum counter
of priority. Scheduling of processes ready to run is
based upon the notion of goodness, which is computed
as counter + priority. The process that is ready to
run and has the highest goodness value will be sched-
uled next.

Normally, when a process is scheduled to run it will
run until one of three things happens: its time slice
runs out, it blocks, or a process with a higher goodness
value becomes ready to run and preempts the cur-
rently running process. When the scheduler cannot
�nd any runnable processes with non-zero counter
values, it boosts the counter for each process in
the system (including non-runnable processes) using
counter = 1

2(counter) + priority. A process that
has used up its time slice will be given a new time
slice of priority, while processes that are not running
with receive higher counter values that converge to-
ward 2 × priority. The default time slice length (for
a counter value of 20) is 210 ms.

This scheduler has some desirable properties. A process
that blocks will accrue a higher counter value and thus
a higher goodness value so it will tend to be more re-
sponsive, and it will also receive a longer time slice the
next time it runs, thus preserving some fairness based
on CPU usage history. When two CPU-bound pro-
cesses are competing with each other, a process with
nice value −20 (priority value 20) will receive twice
as much CPU time as a process with the default nice
value of 0 (priority value 20), so important processes
can be made to run more aggressively without monop-
olizing the system. A process running at the maximum
nice setting of 19 (priority value 1) will receive very
little CPU time when competing with a normal process
of nice value 0, so low priority background tasks can be
made to run without detracting too much from normal
jobs.

It is important to note that the Linux scheduler makes
no attempt to shorten time slices when the system load
is high. Therefore, many CPU-bound processes compet-
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ing with one another will simply round-robin every 210
ms, with the actual wait time linear in the number of
processes running.

For our scenario, however, the scheduler is not ideal. In
an interactive setting, low latency on foreground jobs
is very important. The Linux scheduler does an excel-
lent job of maintaining fairness over time, but it su�ers
from latency problems that sometimes behave in counter-
intuitive ways.

4 Experimental Setup

We collected data in order to establish two assertions:

1. As it stands, the scheduler does not cater to an inter-
active user as we have described. If there is idle CPU
time left when a foreground job is running, starting a
second job to use the remaining CPU time adversely
a�ects the foreground process. If the user wishes to
run an interactive foreground process and enjoy the
illusion of exclusive use of the machine while still us-
ing the idle CPU cycles to do something else, he/she
must take explicit action to change the default be-
havior.

2. The existing mechanism for process priority control
(nice) does not work in an intuitive way to correct
the problem. Setting the nice value of processes
to indicate which process is important (in the fore-
ground by our de�nition) does not always give the
expected behavior.

4.1 Tracing software

We instrumented the Linux 2.2.13 kernel to trace
scheduling events and record when processes become
blocked, ready, or running. In addition, we wrote an
X application to trace which windows were in focus at a
given time. By linking windows to processes in memory,
we can analyze scheduling decisions to see how the in-
teractive user fared. While our X traces do not link the
processes to windows in real time, they are su�cient to
do post-trace analysis and to determine if a real-time X
hinting system would be worth implementing.

The second piece of the software involves simply record-
ing important process data such as PID, creation time,
and parent information. This gives us a connection be-
tween PIDs and executables and also parent/children in-
formation for determining which processes are related to

each other (e.g. descendants of make are all part of the
same compile job).

Finally, the focus information gathered from the X server
acts as a heuristic for determining which processes are
important. It acts based on the assumption that a user
will focus his/her attention on the window containing the
process that he/she deems to be important.

We work from two traces, the �rst of which lasted 31
minutes and produced 11,127 process accounting records,
2,763,197 scheduling events, and 104 focus events. For
the second trace, we concentrated more on di�erent nice
values and ignored focus events. This trace lasted 17
minutes and produced 916 process accounting records
and 539,558 scheduling events.

4.1.1 Kernel Modi�cations

We instrumented a single-processor version of the Linux
kernel to trace every instance where a process's state
changes, primarily between blocked, runnable, and run-
ning states. This involved hooks in a few dozen places
in the core kernel code, and several hundred places in
drivers and related subsystems. The information was
stored in a ring bu�er in kernel memory and passed to
user space via a special device driver that we wrote. For
the �rst trace, we recorded the PID, the previous state,
the new state, and a time stamp for each state change.
From this information we could infer the length of the
ready queue at any given time as well as infer information
about when and how long a given process spent in each
state. For the second trace we also collected information
about process priorities, both static and dynamic.

4.1.2 BSD Process Accounting

The Linux kernel includes support for BSD style process
accounting which records information about processes
when they terminate. It records information about cre-
ation time, the name of the executable if the process did
an exec call, and several other �elds which we didn't use.
It lacked some information that we needed, however, so
we added that functionality. It didn't record the PIDs of
processes, so we included that. In addition, we needed
information about the process hierarchy which was not
recorded. At �rst we modi�ed the records to save the
PID of the parent process, but we found that this was
insu�cient. Too many processes became orphans by the
time they terminated, and they became the children of
init, which didn't help us much. We had to add a �eld
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to the main task structure to record the original parent
of each process in order to record it with the rest of our
trace data.

To �nish our traces, we concluded by going to single
user mode before ceasing process accounting, terminat-
ing most processes so that we had all the information
we needed recorded. The primary purpose of the process
information was to build a process tree.

4.1.3 X Event Logging

To log X focus events, we wrote a utility to query the X
server �ve times per second to see which window was in
focus. Whenever it changed, we recorded a time stamp,
the X window ID, and the name of the window. Unfortu-
nately, X does not have information about which process
is controlling a given window. X is network transparent,
and a PID is not meaningful in a networked environment,
but we considered the special case of a single user run-
ning everything locally so we needed a way to link PIDs
to window IDs. Focus changes are relatively infrequent,
and we found that with the augmented BSD process ac-
counting information and the information we got from
the X server we could identify which process owned the
focused window and associate it with a PID. We set our
windowing environment to automatically focus new win-
dows, so most windows were created at about the same
time as the process was created and having window titles
and creation times was su�cient. Noteably, this scheme
does not link PIDs to windows in real time, but it was
su�cient for our post-trace analysis, because fewer than
20 unique windows required hand matching to processes.

Actually instrumenting focus event hinting from the X
server would require modi�cation of the X server. Most
likely, such modi�cations would take the form of match-
ing processes to windows via the sockets they use or get-
ting processes to transmit their PIDs, which is the ap-
proach taken by Endo[4].

4.2 The traces we ran

We began with a 31-minute trace on a machine with
an AMD K6-2 300 MHz processor with 128 MB RAM
running our trace-enabled Linux 2.2.13 kernel based on
RedHat Linux 6.1. This trace contained an intentionally
heavy workload to �nd and amplify latency issues. The
three most important process families were a kernel com-
pile, an mp3 encoding, and a session with LYX (a word
processor that uses LATEX as its back end) including a

print preview for the built-in user manual (119 pages).
The latter involved a large LATEX job which converted the
document to postscript (invoking many Metafont pro-
cesses to render the text) and then displayed it to the
screen. While these intensive tasks ran, we did some in-
ternet sur�ng using Netscape. Interspersed in the trace
were also the occasional shell-based applications such as
top, ps, and ls.

We also tested the e�ectiveness of nice as a process pri-
ority control mechanism. For this test we ran a CPU-
bound background process, the X server, and an Atari
emulator, trying di�erent combinations of nice values
for the three applications. The CPU-bound process was
the distributed.net client which works on cracking an
rc5 encryption key, and uses all available CPU time. The
emulator emulates the Atari 2600 video game console and
requires about 90% of the CPU time to achieve its target
rate of 60 frames/second. We modi�ed the trace mod-
ule to collect priority and counter information with
each scheduling event. This trace information allowed us
to analyze how di�erent nice values a�ected scheduling
decisions.

5 Results

5.1 Some observations

From informal trials, we observed two main situations
where the user wants something to happen and the sys-
tem is not necessarily cooperating. The �rst is low la-
tency for interactive tasks, i.e. jumpy scrolling, mouse
catching, and menus that don't open up quickly after
clicking on them. An entirely di�erent situation arises
when the user is doing a CPU-intensive task such as a
compile or print preview and he/she keeps that window
in focus, willing the event to �nish as quickly as possi-
ble. Both of these situations can be detected anecdotally
with focus events.

Although the situations are quite di�erent, the remedies
on the surface are quite similar. Both involve telling the
scheduler that the process that is in focus �deserves� the
CPU more frequently. However, in the second case a
desirable behavior is for the scheduler to also give the
process longer time slices when it does get the CPU so
that it can �nish faster.
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5.2 Initial trace

5.2.1 Subjective Results

With the CPU-intensive tasks running, scrolling in
Netscape su�ered noticeably. In addition, when we �rst
asked LYX to output to postscript for a print preview, it
took such a long time without any noticeable results (and
no screen redrawing), that we thought the process had
locked up, so we simply killed it. We started the appli-
cation again and tried the same thing, but this time we
were more patient. However, Metafont was in great con-
tention with the compile going on, and the compile won.
Metafont didn't really get to run until after the compile
had completed; at that point it ran at normal speed and
produced output in a reasonable amount of time. How-
ever, under the user-perceived performance model, if the
LYX window was in focus, Metafont should have taken
precedence over the compile since we knew the compile
would take a long time to �nish and just wanted to allow
it to �nish eventually.

5.2.2 Latency

Our �rst impulse was to measure suboptimal perfor-
mance in terms of latency. We de�ned latency as the
amount of time between when a process became ready
to run until it actually did run. Figure 1 contains a fre-
quency distribution of number of latency events for a
given wait time, with the x axis on a logarithmic scale.
Notice that a great majority of these events are accept-
ably short; from this graph it appears as though pro-
cesses were able to run as soon as they became ready.
Separating latency events by the length of the run queue
didn't have much e�ect either, which was puzzling, be-
cause the Linux scheduler has no provision for shortening
time slices when the run queue gets long, so we would ex-
pect longer latencies in those cases, when in fact, we saw
the opposite. It is also possible that our traces didn't col-
lect quite the right information because we traced each
time the scheduler changed the state of a process. The
kernel often brie�y changes a process's state when it ac-
quires a lock or other important resource. These events
could have interfered with our data. In addition, we be-
lieve that latency may not be the correct measure be-
cause of preemption. Even when a process does get the
CPU, it can be preempted by another process with a
higher priority who has just become unblocked. In gen-
eral, it appeared as though latency didn't tell us anything
useful.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

S
ch

ed
ul

in
g 

E
ve

nt
s

Latency (seconds)

Latency Frequency Distribution

Figure 1: Frequency distribution of latency events. The
horizontal bars represent run queue lengths. For exam-
ple, the space from the bottom to the �rst bar represents
latency events when the run queue was 1. The distance
between the �rst bar and the second bar represents the
number of latency events of the speci�ed length when the
run queue was 2, etc.

5.2.3 Runtime ratio

Next we created a metric which we called runtime ratio,
which is a measure of how well that process competed for
the CPU computed over the entire life of the process. A
low runtime ratio means that when a process was ready
to run, it spent a large percentage of its time waiting
for the CPU. A high runtime ratio indicates that when a
process was ready to run, it was able to run soon after.
We de�ne runtime ratio as

runtime ratio =
CPU time

CPU time + ready time

Figure 2 contains a frequency distribution of runtime ra-
tio events, with the height of the bars representing the
number of processes who had the x axis's particular run-
time ratio. However, we soon realized that measuring by
the number of processes was misleading; LATEX spawned
o� so many processes that it dominated the graph, as
seen in Figure 3. When we extracted only LATEX and re-
lated processes, the shape of the frequency distribution
looked suspiciously like that of all processes. In addition,
the actual lifetime of the process seemed relevant. Does
the user notice a problem when a process with only a life-
time of 0.01 seconds spends most of its lifetime waiting?
In Figure 4 we show the total amount of time in seconds
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Figure 2: Frequency distribution of runtime ratios, all
traced processes

that all processes with a given runtime ratio spend either
running or being ready to run. The large peak on the left
hand side of Figure 2 becomes somewhat shorter, indi-
cating that most of the processes with low runtime ratios
were short-lived. However, so many of these processes
existed that the total time began to add up, enough to
make a di�erence in the print preview situation. In ad-
dition, the right tail of the graph is essentially nonexis-
tent; processes that spent most of their life running were
so short-lived as to not make up a noticeable portion of
overall running time.

The kernel build and the print preview job seem to be
similar in that they both run a series of relatively short,
CPU-bound processes. We expected these two process
families to exhibit similar behavior, but Figure 5 (a
weighted frequency distribution like that of Figure 4)
shows that make and its related processes did not have
the left tail that the LATEX processes had. The LATEX
job spawned many more processes than make, and we
were interested to see if the behavior was similar to that
described by Endo in BSD systems[4]. He found that
the when processes fork in BSD Unix, their CPU usage
history is not copied, so the low dynamic priority that
CPU-bound processes normally acquire is soon forgiven
for the child process. In CPU-bound jobs like make and
LATEX that fork frequently, this translates into an un-
warranted priority boost.

In Linux, the only CPU usage history that is kept is
the counter value, and when a process forks, half of
its counter goes to the parent process and half to the
child. This means that whatever remains of a process's
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Figure 3: Frequency distribution of runtime ratios, LATEX
and related processes only
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time slice when it forks is divided evenly between the
original process and the new child process. In a typ-
ical scenario, a parent process and its child belong to
the same overall job, and by forking, the parent passes
control to the job. The parent process blocks while the
child process execs the next phase of the job. When
this is the case, forking can actually give a scheduling
penalty to the job as a whole. From the application's
standpoint, execution has been transferred from the par-
ent to the child, and half of the current time slice is lost
when this happens. The shorter time slice also yields a
lower goodness value, so the new process typically has to
wait longer to be scheduled the �rst time as well. In the
LATEX job we are examining, the processes were generally
very short lived, so added latency at the beginning and
a short initial time slice had a very strong negative e�ect
on the runtime ratios of these processes. The e�ect was
cumulative over the life of thousands of short processes,
and the end result was an unacceptably long wait for a
routine print preview.

5.3 Atari emulator trace

The print preview job was a clear case where the user
wanted the foreground job to run more aggressively than
it normally would. Even if a mechanism is found for
automatically picking out the important processes, the
question remains about how to inform the scheduler of
this preference in a way that will yield the desired result.
The obvious method is to lower the nice value of the
foreground job, but unfortunately this does not always

rc5 X Atari Frames/sec comments
- 0 0 59.9 smooth
- 0 19 59.8 smooth
- 0 -20 59.8 jerky, unplayable
- -20 0 59.9 smooth
- -20 -20 59.9 smooth
19 0 0 57.4 smooth
0 0 0 36.0 slow, but smooth
0 0 -20 40.2 jerky, unplayable
0 -20 0 38.3 slow, but smooth
0 -20 -20 40.8 jerky, unplayable∗

∗not as bad as the (0,0,-20) case

Table 1: Frame rates and empirical observations for dif-
ferent priority combinations of the Atari emulator, X
Server, and rc5 cracker

behave as one might expect.

5.3.1 Subjective results

When the emulator and X were running at the same
relative nice values, the emulator performed smoothly.
However, when we reniced it down, the game did not
run more smoothly as one might expect. To the contrary,
motion became jerky, and the game was completely un-
playable. Setting X's nice value down to what the em-
ulator was running at �xed the problem.

However, things became more complicated when we in-
serted a CPU-bound process running at default nice
value (0) into the mix. It garnered enough CPU time
to a�ect the performance of the emulator. Lowering
the emulator's nice value had the same result as be-
fore; however, with the CPU-bound process contending
in the background, changing X's priority no longer �xed
the problem. The e�ects of changing priorities seems to
run counter to intuition.

5.3.2 Priority control using nice

The problems we encountered here are mainly relevant
when the foreground job uses enough CPU time that it
routinely uses up its time slice. Table 1 gives a summary
of the various nice values with their frame rates and
subjective comments.

When the emulator and the X server were essentially
the only processes running on the system, the emula-
tor was able to run at full speed, producing the desired
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sixty frames per second. Even when the emulator was
given the lowest priority, it still ran smoothly. Exam-
ining the trace records for this revealed that X had a
goodness value which was consistently higher than that
of the emulator process. Because X was using relatively
little CPU time, it's counter value was high, whereas the
CPU-bound emulator always had a counter less than
or equal to its priority. Whenever it sent an asyn-
chronous request to X, X would become ready to run and
it's goodness value would be high enough that X would
preempt the emulator and update the screen. This is by
design; the scheduler is intended to favor processes that
block over those that don't, but the relationship between
these two processes was a bit precarious.

When we boosted the emulator's priority to be above the
X server's, then the game became jerky and unplayable.
Examining the trace results revealed that, although the
emulator itself reported that it was rendering nearly sixty
frames per second, the X server was only being scheduled
one or two times per second, and so nowhere near the 60
rendered frames were being displayed. Groups of frames
were either dropped or were being rendered too quickly
to see any but the last in the group. Not only did the ren-
dering su�er, but everything else that X did su�ered as
well, including mouse movements. After moving a single
CPU intensive process to a higher priority, the computer
became almost unusable. A process with nice value of
-20 gets a 400 m.s. time slice, and since nothing else had
high enough goodness to preempt it, every other process
su�ered a 400 m.s. latency whenever it got scheduled.

We �xed the problem by lowering the X server's nice
value to match that of the emulator. With nothing else
running on the system, the situation was basically the
same as when both processes were running at nice value
0. When the emulator was running at full frame rate,
there was still idle time on the CPU, and using this idle
time presents some di�culties. The most e�ective way
under the existing system is to ensure that the back-
ground process is running at maximum (19) nice value.
This way, it gets very short time slices and can be pre-
empted by almost any other process needing to run. Even
this is not a perfect solution, however, for reasons both
technical and practical.

When running the background job at maximum nice
value, it still gets to run its time slice in most instances
without interruption. Its low goodness value ensures
that it doesn't run until all other runnable processes have
exhausted their counters to zero. With one other CPU
bound process at nice value 0 this happens 4-5 times per
second. As Table 1 shows, this doesn't cut signi�cantly

into the emulator's frame rate or usability. It does take
some time, though, and forces a �xed latency into the
foreground process several times per second. There is
not way to schedule a process that acts purely as an idle
task replacement.

The more serious problem with this for our purposes is
that this solution requires the background process to be
at low priority. It is not su�cient to boost the priority of
the important foreground process and let all other pro-
cesses move implicitly into the background, as another
test illustrated. When we gave X and the emulator nice
values of -20 and the background task the default nice
value of 0, the system became very di�cult to use. This
time, whenever the background process was scheduled
(again, only when the emulator had exhausted its time
slice) it was allowed to use its entire 210 m.s. time slice
without interruption. Scheduling it a single time took
enough time that over 10 frames were missed, and it was
scheduled one or two times per second (about 400 m.s.
for the emulator and 210 m.s. for the background job per
time slice). During each of these pauses the emulator was
frozen and the mouse was unresponsive.

This is a problematic situation. Our intuition is that the
X server should always have a high priority, and our tests
seem to con�rm this. Beyond that, optimizing the sys-
tem for a particular process or family of processes cannot
be done in the obvious way using the existing scheduler.
Giving all the background processes high nice values is
much more di�cult than lowering the nice value of a few
selected processes. It is not clear what the e�ect would
be of haphazardly increasing the nice value of every pro-
cess that tries to interfere with the foreground job. One
could �nd it suddenly di�cult to move a window under
X because the window manager is too nice, or a back-
ground mp3 player that worked �ne at nice value zero
and didn't interfere too much with the rest of the system
might start skipping, etc. The existing Linux scheduler
does not adapt time slice duration at all beyond the nice
value of the process, and as a result it is di�cult to have a
CPU intensive/latency sensitive foreground job and still
use the idle CPU cycles for something else.

6 Conclusion

6.1 Current Limitations

The default Linux scheduler works well most of the time
under a relatively light load. When two or more CPU
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bound jobs are competing with each other, however, la-
tency issues start to become a problem. This is unfortu-
nate became CPU intensive jobs are natural candidates
for background processing, and many of todays user ap-
plications require a lot of CPU time either constantly or
during certain activities. A workstation user who wishes
to enjoy a responsive system that dedicates all needed
resources to the job on which the user is currently work-
ing must either leave the remaining CPU time idle or
take careful and speci�c action to push other jobs into
the background, and even then the results may not be as
expected.

Our runtime ratio gives a quantitative measure of how
well a given process or family of processes compete for
CPU time, and we are able to use this to back up our sub-
jective observations that the foreground processes were
receiving too little CPU time. We found a problem in the
way dynamic priority is handled when a process forks
that is particularly problematic in the Unix paradigm of
running many small executables to accomplish a large
task. We also showed that nice, the existing priority
control mechanism, does not give su�cient control to
facilitate a simple and intuitive system of boosting pri-
orities for foreground processes.

6.2 Proposed Solutions

One objective in any proposed �xes is to avoid starva-
tion of any processes, and we don't want one process to
take control of the system and lock out other processes,
which sometimes happens in popular commercial oper-
ating systems. Ideally, we'd like to make as few changes
as possible to the scheduler to avoid creating new prob-
lematic situations while �xing others. We hypothesize
that the following changes may help to �x the identi�ed
user-perceived performance problems:

• Boost the priority of X. It is a special case process
which does work on behalf of essentially all inter-
active processes. Making its priority helps in many
situations, and it doesn't seem to hurt processes be-
cause it spends so much time blocking.

• Decrease the size of time slices as run queues get
longer. Otherwise, with multiple CPU-bound jobs,
the scheduler becomes essentially a round-robin with
no preemption, and latency becomes a problem. A
CPU-bound interactive process may have to wait
for several 200 ms time slices before it gets to run

again. Often, concern about context switch over-
head is used to justify long time slices. However,
context switch overhead is mainly an issue at a
much �ner granularity, as often happens with two
processes that are sharing memory or some other
resource that requires synchronization. The extra
overhead of breaking a 200 ms time slice into sev-
eral time slices is not signi�cant.

• Allow for limited hard priorities. For example, one
could change the computation of goodness such
that a process α with nice value at least 20 lower
than another process β will never have to wait on
β. This would allow for some explicit prioritizing.
Processes running at the default priority would be
una�ected, but those whose nice values are explic-
itly set could compete as they do now with processes
whose nice values are within a certain range but
have a �xed scheduling priority when that is the
desired behavior. This would allow for true back-
ground processes and more predictable behavior for
very high priority processes.

• The Linux scheduler could potentially borrow some
ideas from Lottery Scheduling[7]. In particular, un-
like some Unix schedulers, there is a clear mecha-
nism for transferring priority between processes. For
example, a process that depends on X for on-screen
rendering could transfer its counter value to X. This
would give X a higher goodness value so it would
have a better chance of preempting other processes,
and it would also give it a longer time slice to per-
form the work.

7 Future Work

This paper identi�es various user-perceived performance
problems with the Linux scheduler and uses that infor-
mation to hypothesize possible �xes. Actually imple-
menting these policies and tracing similar events to those
discussed here would give a more concrete answer as to
whether the proposed scheduling changes would make
a di�erence. In addition, these implementations would
need to be tested on other usage patterns to see if they
introduce new scheduling problems.

A more di�cult problem is to modify the X server so that
it can give hints to the scheduler based on window fo-
cus information. As mentioned in Section 4.1.3, possible
approaches involve creating an X server which matches
processes to windows via their shared sockets (this would
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require kernel modi�cations) or getting the the X clients
to transmit their PIDs so that the X server actually has
that information. Even with such a mechanism in place,
further research needs to be done to translate such hints
into meaningful information based on that process and
information about which of its children is actually run-
ning. For example, xterm may be the process identi�ed
with a particular window, but gcc may be the process
that needs to be favored. Other considerations come in
as well; for example, the child of one window could cre-
ate an entirely new window, in which case it should no
longer be associated with the original window.

More system speci�c solutions could also prove fruitful;
hints generated by a speci�c window manager may pro-
vide more accurate information than can come from the
X server alone. We have focused on evaluating the exist-
ing system and identifying work that needs to be done
before hints can be acted upon e�ectively. Further in-
vestigation of both parts of the problem could yield in-
teresting and useful results.
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