
Parallax: Managing Storage for a Million Machines

Andrew Warfield, Russ Ross, Keir Fraser, Christian Limpach, Steven Hand
University of Cambridge Computer Laboratory

1 Introduction and Motivation

OS virtualization is drastically changing the face of
system administration for large computer installations
such as commercial datacenters and scientific clusters.
A recent report by Gartner predicts that commercial
use of virtualization will triple over the five year pe-
riod beginning in 2004 [1]. While it is commonly held
that OS virtualization improves the utility, manage-
ability, and scalability of large-scale environments, we
believe that it is not sufficient in itself. In this paper
we argue that the next key challenge facing these en-
vironments lies in the dramatically evolving require-
ments for the management of persistent storage.

More hosts: Over the past few years, academic labs,
server hosting centers, banks and other related organi-
zations have moved firmly in the direction of central-
izing compute resources into single facilities. Clusters
especially have gained considerable momentum: aca-
demic installations of between 500 and 1,000 nodes
are not uncommon and we are aware of several indus-
trial installations of between 5,000 and 10,000 phys-
ical machines in operation today. In these environ-
ments, OS virtualization will result in a multiplication
by between 10 and 100 of the number of active op-
erating system instances; we have corresponded with
several organizations who expect one million virtual
node clusters within the next few years. Needless to
say, each one of these hosts requires a system image
to boot from.

More availability: Live OS migration [2] represents
a qualitative shift in the management of these systems.
Virtual hosts may be moved between physical systems
while they run: this not only allows administrators in-
creased freedom to service hardware but is also being
explored as a mechanism for load-balancing in clus-
ter environments. In order for a VM to migrate, its

system image must remain available, mandating the
location and access transparency of persistent storage.

More history: In addition to the benefits of physi-
cal separation provided by migration, several research
projects have explored the benefits available through
storing historical versions of VM state and allowing
them to “time-travel”. Revisiting these past states of
a VM’s execution has been used for intrusion detec-
tion [3], configuration debugging [4], and debugging
for software development [5]. In extremis, it is fore-
seeable that enough historical state could be preserved
to perform instruction-granularity replay through the
entire life of a cluster. Such functionality would pro-
vide a complete set of forensic information and be of
interest to highly-secure installations.

These three orthogonal issues each imply an increase
in the scale of storage required for clusters of vir-
tual machines. In this paper we propose Parallax, a
distributed storage system which simultaneously pro-
vides different views on a single underlying block
store. Parallax tackles the problems of management
and scale for huge numbers of both active and histori-
cal system images in large cluster environments.

The nature of this new environment has led to two key
design decisions that distinguish Parallax from pre-
vious systems. First, we observe that system image
management is effectively free of write sharing, al-
lowing us to easily exploit persistent caching for high
performance, and to eschew the complexity of a dis-
tributed lock manager. Second, we capitalize on the
nature of the virtualized environment to run an iso-
lated Parallax server on each physical host, giving it
control of local disk and allowing it to serve the set
of local VMs directly. Parallax also uses block-level
copy-on-write techniques to support both sharing and
lightweight snapshots.



2 Design Space

An executing virtual machine requires a certain
amount of persistent storage to hold a root file system,
application data, swap files, and so on. Over time,
VMs may wish to snapshot their persistent storage to
allow backup, to deal with subsequent application or
human errors, or even to allow “time-travel” as de-
scribed in Section 1. Finally, there may be storage
required for VMs not currently executing but which
may be re-deployed in the future.

We unify all forms of persistent storage in a virtual
server farm under the concept of a virtual disk image
(VDI), the basic unit of management. A VDI repre-
sents the persistent state of a VM at a certain point
in its execution, is accessible from any physical ma-
chine, and is stored in a redundant fashion to ensure
high availability and durability. VDIs have human-
readable site-unique names which facilitate the life-
cycle management of virtual machines (e.g. deploy-
ment, snapshotting, suspension, time-travel).

It is quite reasonable to think of managing millions or
even tens of millions of VDIs across a single cluster.
In the following, we first discuss why existing tech-
niques are inadequate, and then present our design for
Parallax and how it addresses this challenge.

2.1 Yet another distributed storage system?
Storage systems have been one of the most exhaus-
tively explored aspects of systems research over the
past 30 years. Probably the most relevant state-of-the-
art in cluster-wide image management is that of stor-
age area networks (SANs). There are several current
commercial offerings which tout “storage virtualiza-
tion”: systems that aggregate a set of storage servers
into a single block-level substrate, and then allow this
substrate to be divided up into individual volumes for
export to network-attached hosts. Four important fac-
tors distinguish Parallax from these systems.

First, SANs are very expensive. Many, especially
academic, environments will desire an alternative to
expensive storage products. Furthermore, given that
clusters are typically built from commodity systems,
each housing a commodity disk, it is realistic to imag-
ine a storage system that aggregates these disks. A
virtualized environment makes this even more true
given that the system-wide set of disks may be directly
controlled using a set of per-host, isolated virtual ma-
chines. The challenge here is to provide the manage-
ability afforded by SANs in this new environment.

Next, the scale that we are attempting far exceeds the
capacity of any SAN that we are currently aware of.
Fortunately there is an economy to this scale: we
expect hosts to be based on a small set of original
template disk images, and take advantage of the fact
that common blocks may be shared across images.
The underlying block store in our system will over-
lay common data where efficiency permits, allowing
common blocks to be shared in many situations.

Third, the creation of new disk images is of critical
importance to our scheme. Preserving historical im-
ages requires frequent run-time snapshotting of active
OS images. A design goal that we are targeting is to
be able to reasonably snapshot a running OS’s disk
and memory state every thirty seconds. Additionally,
we anticipate that new virtual machine instances will
generally be composed from existing templates, and
so the duplication of VDIs is also important. A funda-
mental aspect of our design is in the management of
per-VM block metadata, and providing fast primitives
to fork and snapshot an active image.

Finally, we make the observation that write sharing is
unnecessary in VDI management since at any given
time, there is at most a single VM associated with
a particular VDI. We take advantage of this fact to
aggressively write-optimize our system, and achieve
very high disk performance with considerably less
complexity than is seen in systems using a distributed
lock manager and lease-based persistent caching.

2.2 Parallax: Basic design
Our basic approach is to eliminate write-sharing, en-
able aggressive client-side persistent caching, seed the
system with a small number of template images, use
snapshot and copy-on-write to allow block-level shar-
ing and use simple replication for high availability and
durability.

The local storage on each physical machine is parti-
tioned into a persistent cache for locally hosted VMs
and a contribution to a pool of distributed storage
shared by the cluster. The latter is managed by a
service running in an isolated “Parallax VM” that
presents a simple block device abstraction to each
user VM and translates requests for the virtual blocks
that are visible to the VMs into requests for physical
blocks distributed throughout the cluster.

The service maintains a radix tree for each user VM
to perform the translation. The cluster may initially
be seeded with a set of well-known base images (Fe-

2



dora Core, FreeBSD, etc.) where each image has a
complete radix tree mapping each virtual block to a
64-bit cluster-unique physical block identifier. Addi-
tional base images may be added at any time.

When a new virtual machine is created, the base image
is forked by creating a copy-on-write clone of the base
image’s radix tree. The new root belongs exclusively
to the new user VM, which can write to it without fear
of conflicts. Owned blocks are modified in-place until
the next snapshot, while blocks from the parent im-
age, including nodes from the radix tree, are modi-
fied using a copy-on-write scheme. Each link in the
radix tree contains a writable bit. At snapshot time,
the root of the parent tree is copied and all links in it
are marked read-only. This mechanism allows mod-
ified portions of the tree to be faulted in to the new
snapshot tree as copy-on-write occurs.

Successive snapshots and forks can be performed with
a single increment of the generation number, followed
by copy-on-write for both block data and the metadata
stored in the radix tree. Read-only sharing is achieved
for all data derived from a common ancestor image,
but coincidental redundancy, e.g., two user VMs in-
stall the same package on their respective virtual block
devices and create duplicate blocks, is not exploited
nor detected in this basic scheme.

Writes are committed first to the local disk in the per-
sistent cache and then to the permanent replicas within
the cluster. Both data blocks (parts of VDIs) and in-
dex blocks (parts of the radix tree) are persistently
cached, with a subset of both also being cached in
memory. The cache maintains both the virtual and
physical block address for data blocks, hence avoid-
ing the need to do the radix tree lookup for cache hits.
Write-back is performed periodically, and is also ex-
plicitly triggered by the creation of a snapshot.

Physical blocks are stored across a replication group
composed of storage volumes on other hosts. Each
storage server explicitly manages block allocation for
its volumes. A block write to a replication group re-
ceives the allocated block ids from each server in the
replication group and combines these ids to build the
global block id for the replicated block.

2.3 Parallax: Improved sharing
Block-level snapshots with copy-on-write semantics
allow extensive sharing between virtual machines
with a common ancestor, and between historical snap-
shots of a single VDI. Additional sharing of redundant

content is possible within a single VDI and across VM
images when blocks are indexed by content.

The basic design can be extended to collapse redun-
dant blocks without changing the fundamental struc-
ture of the block store and without affecting read per-
formance and semantics. As described, the basic sys-
tem uses a radix tree to map the per-VDI block num-
bers to 64-bit universal block IDs. With the introduc-
tion of a distributed service mapping content hashes
to universal block IDs, an extra step in the block write
process can consolidate duplicate blocks.

Writes are made initially to the local persistent cache
and a content hash is computed asynchronously. This
keeps potentially slow operations like content hash-
ing and collision detection out of the critical perfor-
mance path. The hash is computed and the hash-to-
block map is consulted to determine if the block is a
duplicate. If it is then the existing block ID is stored in
the radix tree; otherwise the block is written as in the
basic design and the hash-to-block map is updated.

The level of indirection for combining duplicate con-
tent allows it to be a straightforward add-on to the
base architecture with the same distributed block stor-
age pool. The look-aside cache hides most of the per-
formance impact for writes, and nothing changes for
reads. Potential storage savings are obtained at the
cost of the computational cost of computing content
hashes and the storage and network overhead of main-
taining the hash-to-block map.

2.4 Discussion
Parallax comprises a flexible and lightweight snap-
shot mechanism and a simple (and largely orthogonal)
distributed block store for replication and enhanced
availability. Provided that a sufficiently rich set of
base images is provided, most of the sharing between
different VMs and different generations of a single
VM will be captured through common ancestry.

Duplicate content within a single image and duplicate
blocks created independently in different images can
be exploited by the use of content hashing. However
this adds an additional mapping structure and associ-
ated computation and storage overhead: it remains to
be seen whether the benefits outweigh the costs.

3 Prototype Implementation

To elucidate the design of our system, we have devel-
oped a prototype implementation over the past several
months. This is not a complete implementation, but

3



Parallax Server VM Client

VM

Xen

Local VM ManagementCluster Management

Per-VM

VDI Mappings

Persistent

Cache
BlockID Mappings

Local VolumesRemote

Volume

Access

Figure 1: The Parallax server VM

serves as a proof of concept which uses the same data
paths from VM to physical disk, and allows experi-
mentation with the various design options and tech-
niques that we have developed.

Our prototype extends the block tap [6], which is a
block interpositioning mechanism for the Xen virtual
machine monitor [7]. The block tap handles disk re-
quests for a collection of virtual machines by forward-
ing them to a user-space library in an isolated VM.
The tap maintains good performance while allowing
us to easily modify the Parallax code.

The Parallax server is implemented as a user-space
application in an isolated VM. In this configuration
it is able to aggregate block requests from VMs on
the local physical host and concurrently serve block
requests from remote hosts. The Parallax VM re-
ceives direct physical access to local storage, and uses
a GNBD1 client library to access remote blocks.

The structure of our implementation is shown in Fig-
ure 1. The server currently implements a simple copy-
on-write scheme, allowing remote GNBD images to
be accessed by local VMs with writes stored on the
local disk. While this implementation is considerably
simpler than the full Parallax design, it serves to vali-
date our approach and allow us to obtain baseline per-
formance figures.

As shown in the figure, our prototype contains two
points at which blockIDs are remapped. First, virtual
IDs visible to VMs are mapped to a logical ID used by
the cluster-wide block store. Second, these logical IDs
are mapped to the physical hosts, disks, and blocks
where the data is stored. In our prototype, this second

1http://sources.redhat.com/cluster/gnbd

mapping is one-to-one: VMs see the actual block ad-
dresses of a remote GNBD-mounted image. The first
mapping, however, reflects the replacement of remote
blocks in the VM’s image with locally-stored copy-
on-write blocks.

The intention of our prototype has been to guide de-
sign decisions and establish the feasibility of our ap-
proach for constructing a real system. To this end,
we have measured the current performance, achiev-
ing remote read throughputs of 15MB/s to GNBD-
connected images and 50MB/s to the local disk. Our
implementation currently does not benefit from per-
sistent caching, replication or parallel I/O, and uses a
heavyweight mechanism to store the virtual to logical
block mappings in lieu of radix trees. We are working
on integrating these mechanisms into our prototype
and anticipate dramatic performance improvements.

A further avenue of investigation involves the eval-
uation of the performance and functionality of our
snapshotting and time-travel capabilities. As our de-
sign caters specifically to the frequent snapshotting of
VDIs, we expect to achieve very good performance.

4 Related & Future Work

Distributed file systems have existed for over 30 years,
and in common use since the late 80’s. Most success-
ful systems (e.g., AFS [8], NFS [9]) have in practice
been ‘networked file systems’ in which one or a few
servers export disjoint and non-replicated file systems
to a number of clients. Many researchers have also
proposed fully distributed file systems (e.g. Echo [10],
xFS [11] and Farsite [12] to name but a few).

Our design is motivated by previous work on dis-
tributed block-level storage, most notably Petal [13]
and the Federated Array of Bricks (FAB) [14]. FAB
has recently also explored approaches to image snap-
shots [15]. Our assumption of single-writer access al-
lows us to eschew much of the complexity present in
these projects, we hope that this will allow us consid-
erably more room to scale both in terms of number of
images and frequency of snapshots.

Although we are not aware of any work directly ad-
dressing the same problem as Parallax, there are cer-
tainly similarities with other research. Frisbee [16]
has explored the transport issues associated with effi-
ciently deploying a template image onto the disks of a
large number of clustered hosts. The notion of using
an immutable store with copy-on-write stems back at
least to Plan 9 [17], and similar techniques have been

4



used by Elephant [18] and Venti [19]. Our current de-
sign is most similar to those from Bell Labs in that
we do not consider deletes. However we hope to in-
vestigate ways in which deletion can safely be done,
both to save space and to aid incremental addition and
removal of storage devices.

In the future we hope to investigate how to most effi-
ciently manage live migration [2] in the presence of
aggressive persistent caching. A simple design would
simply require write-back off all cached bocks for a
particular VDI before a migrated VM can begin exe-
cution, but this could adversely impact VM downtime.

Instead we plan to keep LRU statistics for cached
blocks on a per VM basis, allowing us to proactively
transfer “hot” blocks to the destination node during
live migration. Liaising with the guest operating sys-
tem may also be of value, since certain blocks will al-
ready be contained within its private buffer cache. A
further interesting question is whether we can choose
the destination for migration based on the similarity
of blocks cached at both locations; probabilistic sim-
ilarity metrics such as bloom filters or sketches may
make sense in this context.

Finally, we also intend to produce complete imple-
mentations of both the basic design of Parallax and the
content-mapped variant, and perform extensive com-
parisons in terms of performance, availability guaran-
tees, and sharing characteristics.

5 Conclusion

Virtual server farms and their variants are emerging
as the architecture of choice for utility computing,
and present a rather different set of distributed stor-
age challenges. We believe Parallax represents a first
step at addressing these requirements, and hope to see
it evolve into the solution for these environments.

References

[1] T. Bittman. Predicts 2004: Server virtualization evolves
rapidly. Gartner, November 2003.

[2] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration of vir-
tual machines. In Proc. USENIX Symposium on Networked
Systems Design and Implementation, 2005.

[3] S. T. King and P. M. Chen. Backtracking intrusions. In
Proc. 19th ACM Symposium on Operating Systems Princi-
ples, pages 223–236, 2003.

[4] A. Whitaker, R. S. Cox, and S. D. Gribble. Configuration
debugging as search: Finding the needle in the haystack.

In Proc. 6th Symposium on Operating System Design and
Implementation, pages 77–90, 2004.

[5] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging oper-
ating systems with time-traveling virtual machines. In Proc.
USENIX Annual Technical Conference, pages 1–15, 2005.

[6] A. Warfield, K. Fraser, S. Hand, and T. Deegan. Facilitating
the development of soft devices. In Proc. USENIX Annual
Technical Conference, pages 379–382, 2005.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In Proc. 19th ACM symposium on
Operating Systems Principles, pages 164–177, 2003.

[8] J. H. Howard. An Overview of the Andrew File System. In
Proc. USENIX Winter Technical Conference, pages 23–26,
February 1988.

[9] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel,
and D. Hitz. NFS version 3: Design and implementation. In
Proc. USENIX Summer Conference, pages 137–152, 1994.

[10] A. D. Birrell, A. Hisgen, C. Jerian, T. Mann, and G. Swart.
The Echo distributed file system. Technical Report 111,
Digital Systems Research Center, October 1993.

[11] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli,
and R. Wang. Serverless network file systems. In Proc. 15th
ACM Symposium on Operating System Principles, pages
109–126, December 1995.

[12] A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken,
J. Douceur, J. Howell, J. Lorch, M. Theimer, and R. Watten-
hofer. FARSITE: Federated, available, and reliable storage
for an incompletely trusted environment. In Proc. 4th Sym-
posium on Operating Systems Design and Implementation,
pages 1–14, December 2002.

[13] E. Lee and C. Thekkath. Petal: Distributed virtual disks.
In Proc. 7th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
pages 84–92, 1996.

[14] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and S. Spence.
Fab: building distributed enterprise disk arrays from com-
modity components. SIGOPS Oper. Syst. Rev., 38(5):48–58,
2004.

[15] M. Ji. Instant snapshots in a federated array of bricks. Tech-
nical Report HPL-2005-15, HP Laboratories, 2005.

[16] M. Hibler, L. Stoller, J. Lepreau, R. Ricci, and C. Barb. Fast,
scalable disk imaging with frisbee. In Proc. USENIX Annual
Technical Conference, 2003.

[17] S. Quinlan. A Cached WORM File System. Software Prac-
tice and Experience, 21(12):1289–1299, 1991.

[18] D. Santry, M. Feely, N. Hutchinson, A. Veitch, R. Carton,
and J. Ofir. Deciding when to forget in the Elephant file sys-
tem. In Proc. 17th ACM Symposium on Operating Systems
Principles, pages 110–123, 1999.

[19] S. Quinlan and S. Dorward. Venti: A new approach to
archival storage. In Proc. 1st USENIX Conference on File
and Storage Technologies, pages 89–101, 2002.

5


